Sebanyak 9 item atau buku ditemukan

A Modern Introduction to Differential Equations

A Modern Introduction to Differential Equations, Second Edition, provides an introduction to the basic concepts of differential equations. The book begins by introducing the basic concepts of differential equations, focusing on the analytical, graphical, and numerical aspects of first-order equations, including slope fields and phase lines. The discussions then cover methods of solving second-order homogeneous and nonhomogeneous linear equations with constant coefficients; systems of linear differential equations; the Laplace transform and its applications to the solution of differential equations and systems of differential equations; and systems of nonlinear equations. Each chapter concludes with a summary of the important concepts in the chapter. Figures and tables are provided within sections to help students visualize or summarize concepts. The book also includes examples and exercises drawn from biology, chemistry, and economics, as well as from traditional pure mathematics, physics, and engineering. This book is designed for undergraduate students majoring in mathematics, the natural sciences, and engineering. However, students in economics, business, and the social sciences with the necessary background will also find the text useful. Student friendly readability- assessible to the average student Early introduction of qualitative and numerical methods Large number of exercises taken from biology, chemistry, economics, physics and engineering Exercises are labeled depending on difficulty/sophistication End of chapter summaries Group projects

This book is designed for undergraduate students majoring in mathematics, the natural sciences, and engineering. However, students in economics, business, and the social sciences with the necessary background will also find the text useful.

Introduction to Differential Equations Using Sage

David Joyner and Marshall Hampton’s lucid textbook explains differential equations using the free and open-source mathematical software Sage. Since its release in 2005, Sage has acquired a substantial following among mathematicians, but its first user was Joyner, who is credited with helping famed mathematician William Stein turn the program into a usable and popular choice. Introduction to Differential Equations Using Sage extends Stein's work by creating a classroom tool that allows both differential equations and Sage to be taught concurrently. It’s a creative and forward-thinking approach to math instruction. Topics include: • First-Order Differential Equations • Incorporation of Newtonian Mechanics• Second-Order Differential Equations• The Annihilator Method• Using Linear Algebra with Differential Equations• Nonlinear Systems• Partial Differential Equations• Romeo and Juliet

Introduction to Differential Equations Using Sage extends Stein's work by creating a classroom tool that allows both differential equations and Sage to be taught concurrently.

Student Solutions Manual, A Modern Introduction to Differential Equations

Student Solutions Manual, A Modern Introduction to Differential Equations

Student Solutions Manual, A Modern Introduction to Differential Equations

An Introduction to Differential Equations and Their Applications

This introductory text explores 1st- and 2nd-order differential equations, series solutions, the Laplace transform, difference equations, much more. Numerous figures, problems with solutions, notes. 1994 edition. Includes 268 figures and 23 tables.

This introductory text explores 1st- and 2nd-order differential equations, series solutions, the Laplace transform, difference equations, much more.

Introduction to Differential Equations

This book provides students with solid knowledge of the basic principles of differential equations and a clear understanding of the various ways of obtaining their solutions by applying suitable methods. It is primarily intended to serve as a textbook for undergraduate students of mathematics. It will also be useful for undergraduate engineering students of all disciplines as part of their course in engineering mathematics. No book on differential equations is complete without a treatment of special functions and special equations. A chapter in this book has been devoted to the detailed study of special functions such as the gamma function, beta function, hypergeometric function, and Bessel function, as well as special equations such as the Legendre equation, Chebyshev equation, Hermite equation, and Laguerre equation. The general properties of various orthogonal polynomials such as Legendre, Chebyshev, Hermite, and Laguerre have also been covered. A large number of solved examples as well as exercises at the end of many chapter sections help to comprehend as well as to strengthen the grasp of the underlying concepts and principles of the subject. The answers to all the exercises are provided at the end of the book.

This book provides students with solid knowledge of the basic principles of differential equations and a clear understanding of the various ways of obtaining their solutions by applying suitable methods.