Sebanyak 2 item atau buku ditemukan

A Concise Introduction to the Theory of Integration

The choice of topics included in this book, as well as the presentation of those topics, has been guided by the author's experience in teaching this material to classes consisting of advanced graduate students who are not concentrating in mathematics. This book contains an introduction to the modern theory of integration with a strong emphasis on the case of LEBESGUE's measure for (RN and eye toward applications to real analysis and probability theory. Following a brief review of the classical RIEMANN theory in Chapter I, the details of LEBESGUE's construction are given in Chapter II, which also contains a derivation of the transformation properties of LEBESGUE's measure under linear maps. Chapter III is devoted to LEBESGUE's theory of integration of real-valued functions on a general measure space. Besides the basic convergence theorems, this chapter introduces product measures and FUBINI's Theorem. In Chapter IV, various topics having to do with the transformation properties of measures are derived. These include: the representation of general integrals in terms of RIEMANN integrals with respect to the distribution function, polar coordinates, JACOBI's transformation formula and finally the introduction of surface measure followed by a proof of the Divergence Theorem. A few of the basic inequalitites of measure theory are derived in Chapter V. In particular, the inequalities of JENSEN, MINKOWSKI and H™LDER are presented. Finally, Chapter VI starts with the DANIELL integral and its applications to the CARATHODORY Extension and RIESZ Representation Theorems. It closes with VON NEUMANN's derivation of the RADON-NIKODYM Theorem.

The choice of topics included in this book, as well as the presentation of those topics, has been guided by the author's experience in teaching this material to classes consisting of advanced graduate students who are not concentrating in ...

A Concise Introduction to Analysis

This book provides an introduction to the basic ideas and tools used in mathematical analysis. It is a hybrid cross between an advanced calculus and a more advanced analysis text and covers topics in both real and complex variables. Considerable space is given to developing Riemann integration theory in higher dimensions, including a rigorous treatment of Fubini's theorem, polar coordinates and the divergence theorem. These are used in the final chapter to derive Cauchy's formula, which is then applied to prove some of the basic properties of analytic functions. Among the unusual features of this book is the treatment of analytic function theory as an application of ideas and results in real analysis. For instance, Cauchy's integral formula for analytic functions is derived as an application of the divergence theorem. The last section of each chapter is devoted to exercises that should be viewed as an integral part of the text. A Concise Introduction to Analysis should appeal to upper level undergraduate mathematics students, graduate students in fields where mathematics is used, as well as to those wishing to supplement their mathematical education on their own. Wherever possible, an attempt has been made to give interesting examples that demonstrate how the ideas are used and why it is important to have a rigorous grasp of them.

This book provides an introduction to the basic ideas and tools used in mathematical analysis.